G2TT
来源类型Discussion paper
规范类型论文
来源IDDP7677
DP7677 Forecasting with Factor-augmented Error Correction Models
Anindya Banerjee; Massimiliano Marcellino; Igor Masten
发表日期2010-02-07
出版年2010
语种英语
摘要As a generalization of the factor-augmented VAR (FAVAR) and of the Error Correction Model (ECM), Banerjee and Marcellino (2009) introduced the Factor-augmented Error Correction Model (FECM). The FECM combines error-correction, cointegration and dynamic factor models, and has several conceptual advantages over standard ECM and FAVAR models. In particular, it uses a larger dataset compared to the ECM and incorporates the long-run information lacking from the FAVAR because of the latter's specification in differences. In this paper we examine the forecasting performance of the FECM by means of an analytical example, Monte Carlo simulations and several empirical applications. We show that relative to the FAVAR, FECM generally offers a higher forecasting precision and in general marks a very useful step forward for forecasting with large datasets.
主题International Macroeconomics
关键词Cointegration Dynamic factor models Error correction models Factor-augmented error correction models Favar Forecasting
URLhttps://cepr.org/publications/dp7677
来源智库Centre for Economic Policy Research (United Kingdom)
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/536514
推荐引用方式
GB/T 7714
Anindya Banerjee,Massimiliano Marcellino,Igor Masten. DP7677 Forecasting with Factor-augmented Error Correction Models. 2010.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Anindya Banerjee]的文章
[Massimiliano Marcellino]的文章
[Igor Masten]的文章
百度学术
百度学术中相似的文章
[Anindya Banerjee]的文章
[Massimiliano Marcellino]的文章
[Igor Masten]的文章
必应学术
必应学术中相似的文章
[Anindya Banerjee]的文章
[Massimiliano Marcellino]的文章
[Igor Masten]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。