G2TT
来源类型Discussion paper
规范类型论文
来源IDDP8755
DP8755 Prior Selection for Vector Autoregressions
Domenico Giannone; Michele Lenza; Giorgio Primiceri
发表日期2012
出版年2012
语种英语
摘要Vector autoregressions (VARs) are flexible time series models that can capture complex dynamic interrelationships among macroeconomic variables. However, their dense parameterization leads to unstable inference and inaccurate out-of-sample forecasts, particularly for models with many variables. A potential solution to this problem is to use informative priors, in order to shrink the richly parameterized unrestricted model towards a parsimonious naïve benchmark, and thus reduce estimation uncertainty. This paper studies the optimal choice of the informativeness of these priors, which we treat as additional parameters, in the spirit of hierarchical modeling. This approach is theoretically grounded, easy to implement, and greatly reduces the number and importance of subjective choices in the setting of the prior. Moreover, it performs very well both in terms of out-of-sample forecasting, and accuracy in the estimation of impulse response functions.
主题International Macroeconomics
关键词Bayesian methods Forecasting Hierarchical modeling Impulse responses Marginal likelihood
URLhttps://cepr.org/publications/dp8755
来源智库Centre for Economic Policy Research (United Kingdom)
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/537591
推荐引用方式
GB/T 7714
Domenico Giannone,Michele Lenza,Giorgio Primiceri. DP8755 Prior Selection for Vector Autoregressions. 2012.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Domenico Giannone]的文章
[Michele Lenza]的文章
[Giorgio Primiceri]的文章
百度学术
百度学术中相似的文章
[Domenico Giannone]的文章
[Michele Lenza]的文章
[Giorgio Primiceri]的文章
必应学术
必应学术中相似的文章
[Domenico Giannone]的文章
[Michele Lenza]的文章
[Giorgio Primiceri]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。