G2TT
来源类型Discussion paper
规范类型论文
来源IDDP8828
DP8828 U-MIDAS: MIDAS regressions with unrestricted lag polynomials
Christian Schumacher; Massimiliano Marcellino; Claudia Foroni
发表日期2012-02-01
出版年2012
语种英语
摘要Mixed-data sampling (MIDAS) regressions allow to estimate dynamic equations that explain a low-frequency variable by high-frequency variables and their lags. When the difference in sampling frequencies between the regressand and the regressors is large, distributed lag functions are typically employed to model dynamics avoiding parameter proliferation. In macroeconomic applications, however, differences in sampling frequencies are often small. In such a case, it might not be necessary to employ distributed lag functions. In this paper, we discuss the pros and cons of unrestricted lag polynomials in MIDAS regressions. We derive unrestricted MIDAS regressions (U-MIDAS) from linear high-frequency models, discuss identification issues, and show that their parameters can be estimated by OLS. In Monte Carlo experiments, we compare U-MIDAS to MIDAS with functional distributed lags estimated by NLS. We show that U-MIDAS performs better than MIDAS for small differences in sampling frequencies. On the other hand, with large differing sampling frequencies, distributed lag-functions outperform unrestricted polynomials. The good performance of U-MIDAS for small differences in frequency is confirmed in an empirical application on nowcasting Euro area and US GDP using monthly indicators.
主题International Macroeconomics
关键词Distributed lag polynomals Mixed data sampling Nowcasting Time aggregation
URLhttps://cepr.org/publications/dp8828
来源智库Centre for Economic Policy Research (United Kingdom)
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/537664
推荐引用方式
GB/T 7714
Christian Schumacher,Massimiliano Marcellino,Claudia Foroni. DP8828 U-MIDAS: MIDAS regressions with unrestricted lag polynomials. 2012.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Christian Schumacher]的文章
[Massimiliano Marcellino]的文章
[Claudia Foroni]的文章
百度学术
百度学术中相似的文章
[Christian Schumacher]的文章
[Massimiliano Marcellino]的文章
[Claudia Foroni]的文章
必应学术
必应学术中相似的文章
[Christian Schumacher]的文章
[Massimiliano Marcellino]的文章
[Claudia Foroni]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。