G2TT
来源类型Discussion paper
规范类型论文
来源IDDP9469
DP9469 Tractable Latent State Filtering for Non-Linear DSGE Models Using a Second-Order Approximation
Robert Kollmann
发表日期2013-05-12
出版年2013
语种英语
摘要This paper develops a novel approach for estimating latent state variables of Dynamic Stochastic General Equilibrium (DSGE) models that are solved using a second-order accurate approximation. I apply the Kalman filter to a state-space representation of the second-order solution based on the ?pruning? scheme of Kim, Kim, Schaumburg and Sims (2008). By contrast to particle filters, no stochastic simulations are needed for the filter here--the present method is thus much faster. In Monte Carlo experiments, the filter here generates more accurate estimates of latent state variables than the standard particle filter. The present filter is also more accurate than a conventional Kalman filter that treats the linearized model as the true data generating process. Due to its high speed, the filter presented here is suited for the estimation of model parameters; a quasi-maximum likelihood procedure can be used for that purpose
主题International Macroeconomics
关键词Estimation of dsge models Kalman filter Latent state filtering Particle filter Pruning Quasi-maximum likelihood Second-order approximation
URLhttps://cepr.org/publications/dp9469
来源智库Centre for Economic Policy Research (United Kingdom)
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/538304
推荐引用方式
GB/T 7714
Robert Kollmann. DP9469 Tractable Latent State Filtering for Non-Linear DSGE Models Using a Second-Order Approximation. 2013.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Robert Kollmann]的文章
百度学术
百度学术中相似的文章
[Robert Kollmann]的文章
必应学术
必应学术中相似的文章
[Robert Kollmann]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。