G2TT
来源类型Discussion paper
规范类型论文
来源IDDP9931
DP9931 Conditional forecasts and scenario analysis with vector autoregressions for large cross-sections
Domenico Giannone; Marta Banbura; Michele Lenza
发表日期2014-04-13
出版年2014
语种英语
摘要This paper describes an algorithm to compute the distribution of conditional forecasts, i.e. projections of a set of variables of interest on future paths of some other variables, in dynamic systems. The algorithm is based on Kalman filtering methods and is computationally viable for large vector autoregressions (VAR) and dynamic factor models (DFM). For a quarterly data set of 26 euro area macroeconomic and financial indicators, we show that both approaches deliver similar forecasts and scenario assessments. In addition, conditional forecasts shed light on the stability of the dynamic relationships in the euro area during the recent episodes of financial turmoil and indicate that only a small number of sources drive the bulk of the fluctuations in the euro area economy.
主题International Macroeconomics
关键词Bayesian shrinkage Conditional forecast Dynamic factor model Large cross-sections Vector autoregression
URLhttps://cepr.org/publications/dp9931
来源智库Centre for Economic Policy Research (United Kingdom)
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/538765
推荐引用方式
GB/T 7714
Domenico Giannone,Marta Banbura,Michele Lenza. DP9931 Conditional forecasts and scenario analysis with vector autoregressions for large cross-sections. 2014.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Domenico Giannone]的文章
[Marta Banbura]的文章
[Michele Lenza]的文章
百度学术
百度学术中相似的文章
[Domenico Giannone]的文章
[Marta Banbura]的文章
[Michele Lenza]的文章
必应学术
必应学术中相似的文章
[Domenico Giannone]的文章
[Marta Banbura]的文章
[Michele Lenza]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。