G2TT
来源类型Discussion paper
规范类型论文
来源IDDP10104
DP10104 Bond Return Predictability: Economic Value and Links to the Macroeconomy
Henry Allan Timmermann; Davide Pettenuzzo; Antonio Gargano
发表日期2014-08-10
出版年2014
语种英语
摘要Studies of bond return predictability find a puzzling disparity between strong statistical evidence of return predictability and the failure to convert return forecasts into economic gains. We show that resolving this puzzle requires accounting for important features of bond return models such as time varying parameters and volatility dynamics. A three-factor model comprising the Fama-Bliss (1987) forward spread, the Cochrane-Piazzesi (2005) combination of forward rates and the Ludvigson-Ng (2009) macro factor generates notable gains in out-of-sample forecast accuracy compared with a model based on the expectations hypothesis. Importantly, we find that such gains in predictive accuracy translate into higher risk-adjusted portfolio returns after accounting for estimation error and model uncertainty, as evidenced by the performance of model combinations. Finally, we find that bond excess returns are predicted to be significantly higher during periods with high inflation uncertainty and low economic growth and that the degree of predictability rises during recessions.
主题Financial Economics
关键词Bayesian estimation Bond returns Model uncertainty stochastic volatility Time-varying parameters
URLhttps://cepr.org/publications/dp10104
来源智库Centre for Economic Policy Research (United Kingdom)
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/538937
推荐引用方式
GB/T 7714
Henry Allan Timmermann,Davide Pettenuzzo,Antonio Gargano. DP10104 Bond Return Predictability: Economic Value and Links to the Macroeconomy. 2014.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Henry Allan Timmermann]的文章
[Davide Pettenuzzo]的文章
[Antonio Gargano]的文章
百度学术
百度学术中相似的文章
[Henry Allan Timmermann]的文章
[Davide Pettenuzzo]的文章
[Antonio Gargano]的文章
必应学术
必应学术中相似的文章
[Henry Allan Timmermann]的文章
[Davide Pettenuzzo]的文章
[Antonio Gargano]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。