G2TT
来源类型Discussion paper
规范类型论文
来源IDDP10461
DP10461 Fast ML estimation of dynamic bifactor models: an application to European inflation
ENRIQUE SENTANA
发表日期2015-03-01
出版年2015
语种英语
摘要We generalise the spectral EM algorithm for dynamic factor models in Fiorentini, Galesi and Sentana (2014) to bifactor models with pervasive global factors complemented by regional ones. We exploit the sparsity of the loading matrices so that researchers can estimate those models by maximum likelihood with many series from multiple regions. We also derive convenient expressions for the spectral scores and information matrix, which allows us to switch to the scoring algorithm near the optimum. We explore the ability of a model with a global factor and three regional ones to capture inflation dynamics across 25 European countries over 1999-2014.
主题International Macroeconomics
关键词Euro area Inflation convergence Spectral maximum likelihood Wiener-kolmogorov filter
URLhttps://cepr.org/publications/dp10461
来源智库Centre for Economic Policy Research (United Kingdom)
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/539293
推荐引用方式
GB/T 7714
ENRIQUE SENTANA. DP10461 Fast ML estimation of dynamic bifactor models: an application to European inflation. 2015.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[ENRIQUE SENTANA]的文章
百度学术
百度学术中相似的文章
[ENRIQUE SENTANA]的文章
必应学术
必应学术中相似的文章
[ENRIQUE SENTANA]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。