G2TT
来源类型Discussion paper
规范类型论文
来源IDDP11077
DP11077 Using Split Samples to Improve Inference on Causal Effects
Marcel Fafchamps; Julien Labonne
发表日期2016-01-31
出版年2016
语种英语
摘要We discuss a method aimed at reducing the risk that spurious results are published. Researchers send their datasets to an independent third party who randomly generates training and testing samples. Researchers perform their analysis on the former and once the paper is accepted for publication the method is applied to the latter and it is those results that are published. Simulations indicate that, under empirically relevant settings, the proposed method significantly reduces type I error and delivers adequate power. The method ? that can be combined with pre-analysis plans ? reduces the risk that relevant hypotheses are left untested.
主题Development Economics
关键词Bonferroni correction Data mining Pre-analysis plan Publication bias
URLhttps://cepr.org/publications/dp11077
来源智库Centre for Economic Policy Research (United Kingdom)
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/539906
推荐引用方式
GB/T 7714
Marcel Fafchamps,Julien Labonne. DP11077 Using Split Samples to Improve Inference on Causal Effects. 2016.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Marcel Fafchamps]的文章
[Julien Labonne]的文章
百度学术
百度学术中相似的文章
[Marcel Fafchamps]的文章
[Julien Labonne]的文章
必应学术
必应学术中相似的文章
[Marcel Fafchamps]的文章
[Julien Labonne]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。