G2TT
来源类型Discussion paper
规范类型论文
来源IDDP11516
DP11516 Reading Between the Lines: Prediction of Political Violence Using Newspaper Text
Hannes Mueller; Christopher Rauh
发表日期2016-09-20
出版年2016
语种英语
摘要This article provides a new methodology to predict armed conflict by using newspaper text. Through machine learning, vast quantities of newspaper text are reduced to interpretable topics. We propose the use of the within-country variation of these topics to predict the timing of conflict. This allows us to avoid the tendency of predicting conflict only in countries where it occurred before. We show that the within-country variation of topics is an extremely robust predictor of conflict and becomes particularly useful when new conflict risks arise. Two aspects seem to be responsible for these features. Topics provide depth because they consist of changing, long lists of terms which makes them able to capture the changing context of conflict. At the same time topics provide width because they summarize all text, including coverage of stabilizing factors.
主题Development Economics
关键词Conflict Civil war Forecasting Machine learning Panel data Topic models Latent dirichlet allocation
URLhttps://cepr.org/publications/dp11516
来源智库Centre for Economic Policy Research (United Kingdom)
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/540330
推荐引用方式
GB/T 7714
Hannes Mueller,Christopher Rauh. DP11516 Reading Between the Lines: Prediction of Political Violence Using Newspaper Text. 2016.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Hannes Mueller]的文章
[Christopher Rauh]的文章
百度学术
百度学术中相似的文章
[Hannes Mueller]的文章
[Christopher Rauh]的文章
必应学术
必应学术中相似的文章
[Hannes Mueller]的文章
[Christopher Rauh]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。