G2TT
来源类型Discussion paper
规范类型论文
来源IDDP12036
DP12036 Learning with Heterogeneous Misspecified Models: Characterization and Robustness
Aislinn Bohren; Daniel Hauser
发表日期2017-05-09
出版年2017
语种英语
摘要This paper develops a general framework to study how misinterpreting information impacts learning. Our main result is a simple criterion to characterize long-run beliefs based on the underlying form of misspecification. We present this characterization in the context of social learning, then highlight how it applies to other learning environments, including individual learning. A key contribution is that our characterization applies to settings with model heterogeneity and provides conditions for entrenched disagreement. Our characterization can be used to determine whether a representative agent approach is valid in the face of heterogeneity, study how differing levels of bias or unawareness of others' biases impact learning, and explore whether the impact of a bias is sensitive to parametric specification or the source of information. This unified framework synthesizes insights gleaned from previously studied forms of misspecification and provides novel insights in specific applications, as we demonstrate in settings with partisan bias, overreaction, naive learning, and level-k reasoning.
主题Industrial Organization
关键词Model misspecification Social learning
URLhttps://cepr.org/publications/dp12036-3
来源智库Centre for Economic Policy Research (United Kingdom)
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/540848
推荐引用方式
GB/T 7714
Aislinn Bohren,Daniel Hauser. DP12036 Learning with Heterogeneous Misspecified Models: Characterization and Robustness. 2017.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Aislinn Bohren]的文章
[Daniel Hauser]的文章
百度学术
百度学术中相似的文章
[Aislinn Bohren]的文章
[Daniel Hauser]的文章
必应学术
必应学术中相似的文章
[Aislinn Bohren]的文章
[Daniel Hauser]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。