G2TT
来源类型Discussion paper
规范类型论文
来源IDDP12224
DP12224 Heterogeneous Employment Effects of Job Search Programmes: A Machine Learning Approach
Michael Lechner; Anthony Strittmatter
发表日期2017-08-18
出版年2017
语种英语
摘要We systematically investigate the effect heterogeneity of job search programmes for unemployed workers. To investigate possibly heterogeneous employment effects, we combine non-experimental causal empirical models with Lasso-type estimators. The empirical analyses are based on rich administrative data from Swiss social security records. We find considerable heterogeneities only during the first six months after the start of training. Consistent with previous results of the literature, unemployed persons with fewer employment opportunities profit more from participating in these programmes. Furthermore, we also document heterogeneous employment effects by residence status. Finally, we show the potential of easy-to-implement programme participation rules for improving average employment effects of these active labour market programmes.
主题Labour Economics
关键词Machine learning Individualized treatment effects Conditional average treatment effects Active labour market policy
URLhttps://cepr.org/publications/dp12224
来源智库Centre for Economic Policy Research (United Kingdom)
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/541035
推荐引用方式
GB/T 7714
Michael Lechner,Anthony Strittmatter. DP12224 Heterogeneous Employment Effects of Job Search Programmes: A Machine Learning Approach. 2017.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Michael Lechner]的文章
[Anthony Strittmatter]的文章
百度学术
百度学术中相似的文章
[Michael Lechner]的文章
[Anthony Strittmatter]的文章
必应学术
必应学术中相似的文章
[Michael Lechner]的文章
[Anthony Strittmatter]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。