G2TT
来源类型Discussion paper
规范类型论文
来源IDDP12261
DP12261 Measuring Productivity and Absorptive Capacity Evolution in OECD Economies
Markus Eberhardt
发表日期2017-08-31
出版年2017
语种英语
摘要We develop a new way to estimate cross-country production functions which allows us to parametrize unobserved non-factor inputs (total factor productivity) as a global technology process combined with country-specific time-varying absorptive capacity. The advantage of our approach is that we do not need to adopt proxies for absorptive capacity such as investments in research and development (R&D) or human capital, or specify explicit channels through which global technology can transfer to individual countries, such as trade, FDI or migration: we provide an endogenously-created index for relative absorptive capacity which is easy to interpret and encompasses potential proxies and channels. Our implementation adopts an unobserved component model and uses a Bayesian Markov Chain Monte Carlo (MCMC) algorithm to obtain posterior estimates for all model parameters. This contribution to empirical methodology allows researchers to employ widely-available data for factor inputs (capital, labor) and GDP or value-added in order to arrive at policy-relevant insights for industrial and innovation policy. Applying our methodology to a panel of 31 advanced economies we chart the dynamic evolution of global TFP and country-specific absorptive capacity and then demonstrate the close relationship between our estimates and salient indicators of growth-enhancing economic policy.
主题Macroeconomics and Growth
关键词Total factor productivity Absorptive capacity Common factor model Time-varying parameters Unobserved component model Mcmc
URLhttps://cepr.org/publications/dp12261
来源智库Centre for Economic Policy Research (United Kingdom)
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/541072
推荐引用方式
GB/T 7714
Markus Eberhardt. DP12261 Measuring Productivity and Absorptive Capacity Evolution in OECD Economies. 2017.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Markus Eberhardt]的文章
百度学术
百度学术中相似的文章
[Markus Eberhardt]的文章
必应学术
必应学术中相似的文章
[Markus Eberhardt]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。