G2TT
来源类型Discussion paper
规范类型论文
来源IDDP12448
DP12448 Predictably Unequal? The Effects of Machine Learning on Credit Markets
Paul Goldsmith-Pinkham; Ansgar Walther
发表日期2017-11-19
出版年2017
语种英语
摘要Recent innovations in statistical technology, including in evaluating creditworthiness, have sparked concerns about impacts on the fairness of outcomes across categories such as race and gender. We build a simple equilibrium model of credit provision in which to evaluate such impacts. We find that as statistical technology changes, the effects on disparity depend on a combination of the changes in the functional form used to evaluate creditworthiness using underlying borrower characteristics and the cross-category distribution of these characteristics. Employing detailed data on US mortgages and applications, we predict default using a number of popular machine learning techniques, and embed these techniques in our equilibrium model to analyze both extensive margin (exclusion) and intensive margin (rates) impacts on disparity. We propose a basic measure of cross-category disparity, and find that the machine learning models perform worse on this measure than logit models, especially on the intensive margin. We discuss the implications of our findings for mortgage policy.
主题Financial Economics
关键词Machine learning Credit access Mortgages Statistical discrimination
URLhttps://cepr.org/publications/dp12448
来源智库Centre for Economic Policy Research (United Kingdom)
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/541259
推荐引用方式
GB/T 7714
Paul Goldsmith-Pinkham,Ansgar Walther. DP12448 Predictably Unequal? The Effects of Machine Learning on Credit Markets. 2017.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Paul Goldsmith-Pinkham]的文章
[Ansgar Walther]的文章
百度学术
百度学术中相似的文章
[Paul Goldsmith-Pinkham]的文章
[Ansgar Walther]的文章
必应学术
必应学术中相似的文章
[Paul Goldsmith-Pinkham]的文章
[Ansgar Walther]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。