G2TT
来源类型Discussion paper
规范类型论文
来源IDDP12532
DP12532 Structural Interpretation of Vector Autoregressions with Incomplete Identification: Revisiting the Role of Oil Supply and Demand Shocks
Christiane Baumeister; James Hamilton
发表日期2017-12-22
出版年2017
语种英语
摘要Traditional approaches to structural vector autoregressions can be viewed as special cases of Bayesian inference arising from very strong prior beliefs. These methods can be generalized with a less restrictive formulation that incorporates uncertainty about the identifying assumptions themselves. We use this approach to revisit the importance of shocks to oil supply and demand. Supply disruptions turn out to be a bigger factor in historical oil price movements and inventory accumulation a smaller factor than implied by earlier estimates. Supply shocks lead to a reduction in global economic activity after a significant lag, whereas shocks to oil demand do not.
主题International Macroeconomics and Finance
关键词Oil prices Vector autoregressions Sign restrictions Measurement error Bayesian inference
URLhttps://cepr.org/publications/dp12532
来源智库Centre for Economic Policy Research (United Kingdom)
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/541343
推荐引用方式
GB/T 7714
Christiane Baumeister,James Hamilton. DP12532 Structural Interpretation of Vector Autoregressions with Incomplete Identification: Revisiting the Role of Oil Supply and Demand Shocks. 2017.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Christiane Baumeister]的文章
[James Hamilton]的文章
百度学术
百度学术中相似的文章
[Christiane Baumeister]的文章
[James Hamilton]的文章
必应学术
必应学术中相似的文章
[Christiane Baumeister]的文章
[James Hamilton]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。