G2TT
来源类型Discussion paper
规范类型论文
来源IDDP12589
DP12589 Macroeconomic Nowcasting and Forecasting with Big Data
Domenico Giannone; Andrea Tambalotti
发表日期2018-01-13
出版年2018
语种英语
摘要Data, data, data ... Economists know their importance well, especially when it comes to monitoring macroeconomic conditions -- the basis for making informed economic and policy decisions. Handling large and complex data sets was a challenge that macroeconomists engaged in real-time analysis faced long before "big data" became pervasive in other disciplines. We review how methods for tracking economic conditions using big data have evolved over time and explain how econometric techniques have advanced to mimic and automate best practices of forecasters on trading desks, at central banks, and in other market-monitoring roles. We present in detail the methodology underlying the New York Fed Staff Nowcast, which employs these innovative techniques to produce early estimates of GDP growth, synthesizing a wide range of macroeconomic data as they become available.
主题Monetary Economics and Fluctuations
关键词Monitoring economic conditions Business cycle analysis High-dimensional data Real-time data flow
URLhttps://cepr.org/publications/dp12589
来源智库Centre for Economic Policy Research (United Kingdom)
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/541400
推荐引用方式
GB/T 7714
Domenico Giannone,Andrea Tambalotti. DP12589 Macroeconomic Nowcasting and Forecasting with Big Data. 2018.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Domenico Giannone]的文章
[Andrea Tambalotti]的文章
百度学术
百度学术中相似的文章
[Domenico Giannone]的文章
[Andrea Tambalotti]的文章
必应学术
必应学术中相似的文章
[Domenico Giannone]的文章
[Andrea Tambalotti]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。