G2TT
来源类型Discussion paper
规范类型论文
来源IDDP12682
DP12682 Consistent non-Gaussian pseudo maximum likelihood estimators
ENRIQUE SENTANA; Gabriele Fiorentini
发表日期2018-02-04
出版年2018
语种英语
摘要We characterise the mean and variance parameters that distributionally misspecified maximum likelihood estimators can consistently estimate in multivariate conditionally heteroskedastic dynamic regression models. We also provide simple closed-form consistent estimators for the rest. The inclusion of means and the explicit coverage of multivariate models make our procedures useful not only for GARCH models but also in many empirically relevant macro and finance applications involving VARs and multivariate regressions. We study the statistical properties of our proposed consistent estimators, as well as their efficiency relative to Gaussian pseudo maximum likelihood procedures. Finally, we provide finite sample results through Monte Carlo simulations.
主题Financial Economics
关键词Consistency Efficiency Misspecification
URLhttps://cepr.org/publications/dp12682
来源智库Centre for Economic Policy Research (United Kingdom)
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/541494
推荐引用方式
GB/T 7714
ENRIQUE SENTANA,Gabriele Fiorentini. DP12682 Consistent non-Gaussian pseudo maximum likelihood estimators. 2018.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[ENRIQUE SENTANA]的文章
[Gabriele Fiorentini]的文章
百度学术
百度学术中相似的文章
[ENRIQUE SENTANA]的文章
[Gabriele Fiorentini]的文章
必应学术
必应学术中相似的文章
[ENRIQUE SENTANA]的文章
[Gabriele Fiorentini]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。