G2TT
来源类型Discussion paper
规范类型论文
来源IDDP12930
DP12930 Sufficient Statistics for Unobserved Heterogeneity in Structural Dynamic Logit Models
Victor Aguirregabiria; Jiaying Gu; Yao Luo
发表日期2018-05-11
出版年2018
语种英语
摘要We study the identification and estimation of structural parameters in dynamic panel data logit models where decisions are forward-looking and the joint distribution of unobserved heterogeneity and observable state variables is nonparametric, i.e., fixed-effects model. We consider models with two endogenous state variables: the lagged decision variable, and the time duration in the last choice. This class of models includes as particular cases important economic applications such as models of market entry-exit, occupational choice, machine replacement, inventory and investment decisions, or dynamic demand of differentiated products. The identification of structural parameters requires a sufficient statistic that controls for unobserved heterogeneity not only in current utility but also in the continuation value of the forward-looking decision problem. We obtain the minimal sufficient statistic and prove identification of some structural parameters using a conditional likelihood approach. We apply this estimator to a machine replacement model.
主题Industrial Organization
关键词Panel data discrete choice models Unobserved heterogeneity Structural state dependence Sufficient statistic Dynamic structural models Fixed effects
URLhttps://cepr.org/publications/dp12930
来源智库Centre for Economic Policy Research (United Kingdom)
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/541742
推荐引用方式
GB/T 7714
Victor Aguirregabiria,Jiaying Gu,Yao Luo. DP12930 Sufficient Statistics for Unobserved Heterogeneity in Structural Dynamic Logit Models. 2018.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Victor Aguirregabiria]的文章
[Jiaying Gu]的文章
[Yao Luo]的文章
百度学术
百度学术中相似的文章
[Victor Aguirregabiria]的文章
[Jiaying Gu]的文章
[Yao Luo]的文章
必应学术
必应学术中相似的文章
[Victor Aguirregabiria]的文章
[Jiaying Gu]的文章
[Yao Luo]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。