G2TT
来源类型Discussion paper
规范类型论文
来源IDDP13034
DP13034 The Forcasting Performance of Dynamic Factor Models with Vintage Data
Mario Forni
发表日期2018-07-03
出版年2018
语种英语
摘要We present a comparative analysis of the forecasting performance of two dynamic factor models, the Stock and Watson (2002a, b) model and the Forni, Hallin, Lippi and Reichlin (2005) model, based on vintage data. Our dataset contains 107 monthly US “first release” macroeconomic and financial vintage time series, spanning the 1996:12 to 2017:6 period with monthly periodicity, extracted from the Bloomberg database†. We compute real-time one-month-ahead forecasts with both models for four key macroeconomic variables: the month-on-month change in industrial production, the unemployment rate, the core consumer price index and the ISM Purchasing Managers’ Index. First, we find that both the Stock and Watson and the Forni, Hallin, Lippi and Reichlin models outperform simple autoregressions for industrial production, unemployment rate and consumer prices, but that only the first model does so for the PMI. Second, we find that neither models always outperform the other. While Forni, Hallin, Lippi and Reichlin’s beats Stock and Watson’s in forecasting industrial production and consumer prices, the opposite happens for the unemployment rate and the PMI.
主题Monetary Economics and Fluctuations
关键词Dynamic factor models Forecasting Forecasting performance Vintage data First release data
URLhttps://cepr.org/publications/dp13034
来源智库Centre for Economic Policy Research (United Kingdom)
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/541841
推荐引用方式
GB/T 7714
Mario Forni. DP13034 The Forcasting Performance of Dynamic Factor Models with Vintage Data. 2018.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Mario Forni]的文章
百度学术
百度学术中相似的文章
[Mario Forni]的文章
必应学术
必应学术中相似的文章
[Mario Forni]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。