G2TT
来源类型Discussion paper
规范类型论文
来源IDDP13426
DP13426 New testing approaches for mean-variance predictability
Gabriele Fiorentini; ENRIQUE SENTANA
发表日期2019-01-04
出版年2019
语种英语
摘要We propose tests for smooth but persistent serial correlation in risk premia and volatilities that exploit the non-normality of financial returns. Our parametric tests are robust to distributional misspecification, while our semiparametric tests are as powerful as if we knew the true return distribution. Local power analyses confirm their gains over existing methods, while Monte Carlo exercises assess their finite sample reliability. We apply our tests to quarterly returns on the five Fama-French factors for international stocks, whose distributions are mostly symmetric and fat-tailed. Our results highlight noticeable differences across regions and factors and confirm the fragility of Gaussian tests.
主题Financial Economics
关键词Financial forecasting Moment tests Misspecification Robustness Volatility
URLhttps://cepr.org/publications/dp13426
来源智库Centre for Economic Policy Research (United Kingdom)
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/542242
推荐引用方式
GB/T 7714
Gabriele Fiorentini,ENRIQUE SENTANA. DP13426 New testing approaches for mean-variance predictability. 2019.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Gabriele Fiorentini]的文章
[ENRIQUE SENTANA]的文章
百度学术
百度学术中相似的文章
[Gabriele Fiorentini]的文章
[ENRIQUE SENTANA]的文章
必应学术
必应学术中相似的文章
[Gabriele Fiorentini]的文章
[ENRIQUE SENTANA]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。