G2TT
来源类型Discussion paper
规范类型论文
来源IDDP13430
DP13430 Modified Causal Forests for Estimating Heterogeneous Causal Effects
Michael Lechner
发表日期2019-01-06
出版年2019
语种英语
摘要Uncovering the heterogeneity of causal effects of policies and business decisions at various levels of granularity provides substantial value to decision makers. This paper develops new estimation and inference procedures for multiple treatment models in a selection-on-observables framework by modifying the Causal Forest approach suggested by Wager and Athey (2018). The new esti-mators have desirable theoretical and computational properties for various aggregation levels of the causal effects. An Empirical Monte Carlo study shows that they may outperform previously suggested estimators. Inference tends to be accurate for effects relating to larger groups and conservative for effects relating to fine levels of granularity. An application to the evaluation of an active labour mar-ket programme shows the value of the new methods for applied research.
主题Labour Economics
关键词Causal machine learning Statistical learning Average treatment effects Conditional aver-age treatment effects Multiple treatments Selection-on-observable Causal forests
URLhttps://cepr.org/publications/dp13430
来源智库Centre for Economic Policy Research (United Kingdom)
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/542246
推荐引用方式
GB/T 7714
Michael Lechner. DP13430 Modified Causal Forests for Estimating Heterogeneous Causal Effects. 2019.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Michael Lechner]的文章
百度学术
百度学术中相似的文章
[Michael Lechner]的文章
必应学术
必应学术中相似的文章
[Michael Lechner]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。