G2TT
来源类型Discussion paper
规范类型论文
来源IDDP13829
DP13829 The Promise and Pitfalls of Conflict Prediction: Evidence from Colombia and Indonesia
Christopher Blattman; Oeindrila Dube; Samuel Bazzi; Matthew Gudgeon; Richard Peck; Robert Blair
发表日期2019-06-27
出版年2019
语种英语
摘要Policymakers can take actions to prevent local conflict before it begins, if such violence can be accurately predicted. We examine the two countries with the richest available sub-national data: Colombia and Indonesia. We assemble two decades of finegrained violence data by type, alongside hundreds of annual risk factors. We predict violence one year ahead with a range of machine learning techniques. Models reliably identify persistent, high-violence hot spots. Violence is not simply autoregressive, as detailed histories of disaggregated violence perform best. Rich socio-economic data also substitute well for these histories. Even with such unusually rich data, however, the models poorly predict new outbreaks or escalations of violence. “Best case” scenarios with panel data fall short of workable early-warning systems.
主题Development Economics
关键词Conflict Prediction Indonesia Colombia Civil war Machine learning Forecasting
URLhttps://cepr.org/publications/dp13829
来源智库Centre for Economic Policy Research (United Kingdom)
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/542704
推荐引用方式
GB/T 7714
Christopher Blattman,Oeindrila Dube,Samuel Bazzi,et al. DP13829 The Promise and Pitfalls of Conflict Prediction: Evidence from Colombia and Indonesia. 2019.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Christopher Blattman]的文章
[Oeindrila Dube]的文章
[Samuel Bazzi]的文章
百度学术
百度学术中相似的文章
[Christopher Blattman]的文章
[Oeindrila Dube]的文章
[Samuel Bazzi]的文章
必应学术
必应学术中相似的文章
[Christopher Blattman]的文章
[Oeindrila Dube]的文章
[Samuel Bazzi]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。