G2TT
来源类型Discussion paper
规范类型论文
来源IDDP13914
DP13914 Predicting Consumer Default: A Deep Learning Approach
Stefania Albanesi; Domonkos Vamossy
发表日期2019-08-07
出版年2019
语种英语
摘要We develop a model to predict consumer default based on deep learning. We show that the model consistently outperforms standard credit scoring models, even though it uses the same data. Our model is interpretable and is able to provide a score to a larger class of borrowers relative to standard credit scoring models while accurately tracking variations in systemic risk. We argue that these properties can provide valuable insights for the design of policies targeted at reducing consumer default and alleviating its burden on borrowers and lenders, as well as macroprudential regulation.
主题Financial Economics ; Monetary Economics and Fluctuations
关键词Consumer default Credit scores Deep learning Macroprudential policy
URLhttps://cepr.org/publications/dp13914
来源智库Centre for Economic Policy Research (United Kingdom)
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/542795
推荐引用方式
GB/T 7714
Stefania Albanesi,Domonkos Vamossy. DP13914 Predicting Consumer Default: A Deep Learning Approach. 2019.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Stefania Albanesi]的文章
[Domonkos Vamossy]的文章
百度学术
百度学术中相似的文章
[Stefania Albanesi]的文章
[Domonkos Vamossy]的文章
必应学术
必应学术中相似的文章
[Stefania Albanesi]的文章
[Domonkos Vamossy]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。