Gateway to Think Tanks
来源类型 | Discussion paper |
规范类型 | 论文 |
来源ID | DP14024 |
DP14024 Will Artificial Intelligence Replace Computational Economists Any Time Soon? | |
Serguei Maliar; Pablo Winant | |
发表日期 | 2019-09-25 |
出版年 | 2019 |
语种 | 英语 |
摘要 | Artificial intelligence (AI) has impressive applications in many fields (speech recognition, computer vision, etc.). This paper demonstrates that AI can be also used to analyze complex and high-dimensional dynamic economic models. We show how to convert three fundamental objects of economic dynamics -- lifetime reward, Bellman equation and Euler equation -- into objective functions suitable for deep learning (DL). We introduce all-in-one integration technique that makes the stochastic gradient unbiased for the constructed objective functions. We show how to use neural networks to deal with multicollinearity and perform model reduction in Krusell and Smith's (1998) model in which decision functions depend on thousands of state variables -- we literally feed distributions into neural networks! In our examples, the DL method was reliable, accurate and linearly scalable. Our ubiquitous Python code, built with Dolo and Google TensorFlow platforms, is designed to accommodate a variety of models and applications. |
主题 | Monetary Economics and Fluctuations |
关键词 | Artificial intelligence Machine learning Deep learning Neural network Stochastic gradient Dynamic models Dynamic programming Bellman equation Euler equation Value function |
URL | https://cepr.org/publications/dp14024-1 |
来源智库 | Centre for Economic Policy Research (United Kingdom) |
资源类型 | 智库出版物 |
条目标识符 | http://119.78.100.153/handle/2XGU8XDN/542911 |
推荐引用方式 GB/T 7714 | Serguei Maliar,Pablo Winant. DP14024 Will Artificial Intelligence Replace Computational Economists Any Time Soon?. 2019. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Serguei Maliar]的文章 |
[Pablo Winant]的文章 |
百度学术 |
百度学术中相似的文章 |
[Serguei Maliar]的文章 |
[Pablo Winant]的文章 |
必应学术 |
必应学术中相似的文章 |
[Serguei Maliar]的文章 |
[Pablo Winant]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。