G2TT
来源类型Discussion paper
规范类型论文
来源IDDP14066
DP14066 Competing Models
José Luis Montiel Olea; Pietro Ortoleva; Mallesh Pai; Andrea Prat
发表日期2019-10-19
出版年2019
语种英语
摘要We develop a model in which different agents compete to predict a variable of interest. This variable is related to observables via an unknown data generating process. All agents are Bayesian, but may have ‘misspecified models’ of the world, i.e., they consider different subsets of observables to make their prediction. After observing a common dataset, who has the highest confidence in her predictive ability? We characterize it and show that it crucially depends on the size of the dataset. With big data, we show it is typically ‘large dimensional,’ possibly using more variables than the true model. With small data, we show (under additional assumptions) that it is an agent using a model that is ‘small-dimensional,’ in the sense of considering fewer covariates than the true data generating process. The theory is applied to auctions of assets where bidders observe the same information but hold different priors.
主题Industrial Organization
URLhttps://cepr.org/publications/dp14066
来源智库Centre for Economic Policy Research (United Kingdom)
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/542951
推荐引用方式
GB/T 7714
José Luis Montiel Olea,Pietro Ortoleva,Mallesh Pai,et al. DP14066 Competing Models. 2019.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[José Luis Montiel Olea]的文章
[Pietro Ortoleva]的文章
[Mallesh Pai]的文章
百度学术
百度学术中相似的文章
[José Luis Montiel Olea]的文章
[Pietro Ortoleva]的文章
[Mallesh Pai]的文章
必应学术
必应学术中相似的文章
[José Luis Montiel Olea]的文章
[Pietro Ortoleva]的文章
[Mallesh Pai]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。