G2TT
来源类型Discussion paper
规范类型论文
来源IDDP14235
DP14235 Market Efficiency in the Age of Big Data
Ian Martin; Stefan Nagel
发表日期2019-12-22
出版年2019
语种英语
摘要Modern investors face a high-dimensional prediction problem: thousands of observable variables are potentially relevant for forecasting. We reassess the conventional wisdom on market efficiency in light of this fact. In our model economy, which resembles a typical machine learning setting, N assets have cash flows that are a linear function of J firm characteristics, but with uncertain coefficients. Risk-neutral Bayesian investors impose shrinkage (ridge regression) or sparsity (Lasso) when they estimate the J coefficients of the model and use them to price assets. When J is comparable in size to N, returns appear cross-sectionally predictable using firm characteristics to an econometrician who analyzes data from the economy ex post. A factor zoo emerges even without p-hacking and data-mining. Standard in-sample tests of market efficiency reject the no-predictability null with high probability, despite the fact that investors optimally use the information available to them in real time. In contrast, out-of-sample tests retain their economic meaning.
主题Financial Economics
关键词Market efficiency Big data Machine learning
URLhttps://cepr.org/publications/dp14235
来源智库Centre for Economic Policy Research (United Kingdom)
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/543121
推荐引用方式
GB/T 7714
Ian Martin,Stefan Nagel. DP14235 Market Efficiency in the Age of Big Data. 2019.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Ian Martin]的文章
[Stefan Nagel]的文章
百度学术
百度学术中相似的文章
[Ian Martin]的文章
[Stefan Nagel]的文章
必应学术
必应学术中相似的文章
[Ian Martin]的文章
[Stefan Nagel]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。