G2TT
来源类型Discussion paper
规范类型论文
来源IDDP14270
DP14270 Priority to unemployed immigrants? A causal machine learning evaluation of training in Belgium
Michael Lechner; Bart Cockx; Joost Bollens
发表日期2020-01-04
出版年2020
语种英语
摘要We investigate heterogenous employment effects of Flemish training programmes. Based on administrative individual data, we analyse programme effects at various aggregation levels using Modified Causal Forests (MCF), a causal machine learning estimator for multiple programmes. While all programmes have positive effects after the lock-in period, we find substantial heterogeneity across programmes and types of unemployed. Simulations show that assigning unemployed to programmes that maximise individual gains as identified in our estimation can considerably improve effectiveness. Simplified rules, such as one giving priority to unemployed with low employability, mostly recent migrants, lead to about half of the gains obtained by more sophisticated rules.
主题Labour Economics
关键词Policy evaluation Active labour market policy Causal machine learning Modified causal forest Conditional average treatment effects
URLhttps://cepr.org/publications/dp14270
来源智库Centre for Economic Policy Research (United Kingdom)
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/543161
推荐引用方式
GB/T 7714
Michael Lechner,Bart Cockx,Joost Bollens. DP14270 Priority to unemployed immigrants? A causal machine learning evaluation of training in Belgium. 2020.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Michael Lechner]的文章
[Bart Cockx]的文章
[Joost Bollens]的文章
百度学术
百度学术中相似的文章
[Michael Lechner]的文章
[Bart Cockx]的文章
[Joost Bollens]的文章
必应学术
必应学术中相似的文章
[Michael Lechner]的文章
[Bart Cockx]的文章
[Joost Bollens]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。