G2TT
来源类型Discussion paper
规范类型论文
来源IDDP14271
DP14271 Drawing Conclusions from Structural Vector Autoregressions Identified on the Basis of Sign Restrictions
Christiane Baumeister; James Hamilton
发表日期2020-01-04
出版年2020
语种英语
摘要This paper discusses the problems associated with using information about the signs of certain magnitudes as a basis for drawing structural conclusions in vector autoregressions. We also review available tools to solve these problems. For illustration we use Dahlhaus and Vasishtha’s (2019) study of the effects of a U.S. monetary contraction on capital flows to emerging markets. We explain why sign restrictions alone are not enough to allow us to answer the question and suggest alternative approaches that could be used.
主题International Macroeconomics and Finance ; Monetary Economics and Fluctuations
关键词Structural vector autoregressions Sign restrictions Identified set Informative priors Bayesian inference monetary policy Capital flows
URLhttps://cepr.org/publications/dp14271
来源智库Centre for Economic Policy Research (United Kingdom)
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/543162
推荐引用方式
GB/T 7714
Christiane Baumeister,James Hamilton. DP14271 Drawing Conclusions from Structural Vector Autoregressions Identified on the Basis of Sign Restrictions. 2020.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Christiane Baumeister]的文章
[James Hamilton]的文章
百度学术
百度学术中相似的文章
[Christiane Baumeister]的文章
[James Hamilton]的文章
必应学术
必应学术中相似的文章
[Christiane Baumeister]的文章
[James Hamilton]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。