Gateway to Think Tanks
来源类型 | Discussion paper |
规范类型 | 论文 |
来源ID | DP14273 |
DP14273 Inferring Complementarity from Correlations rather than Structural Estimation | |
Alessandro Iaria | |
发表日期 | 2020-01-05 |
出版年 | 2020 |
语种 | 英语 |
摘要 | According to the Hicksian criterion, two products are complements if their (compensated) cross-price elasticity is negative. While attractive in theory, the implementation of the Hicksian criterion can be hard: computing elasticities requires the estimation of structural models allowing for both complementarity and substitutability. Here, we instead investigate the correlation criterion, whose implementation only requires the comparison of observed market shares. We show that, in a large class of non-parametric models, the correlation criterion satisfies all the axioms by Manzini et al. (2018) and how, in mixed logit models, it can be used to learn about the Hicksian criterion. |
主题 | Industrial Organization |
关键词 | Hicksian complementarity Substitutability Correlation Demand elasticity Demand estimation Market shares |
URL | https://cepr.org/publications/dp14273 |
来源智库 | Centre for Economic Policy Research (United Kingdom) |
资源类型 | 智库出版物 |
条目标识符 | http://119.78.100.153/handle/2XGU8XDN/543164 |
推荐引用方式 GB/T 7714 | Alessandro Iaria. DP14273 Inferring Complementarity from Correlations rather than Structural Estimation. 2020. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Alessandro Iaria]的文章 |
百度学术 |
百度学术中相似的文章 |
[Alessandro Iaria]的文章 |
必应学术 |
必应学术中相似的文章 |
[Alessandro Iaria]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。