G2TT
来源类型Discussion paper
规范类型论文
来源IDDP14273
DP14273 Inferring Complementarity from Correlations rather than Structural Estimation
Alessandro Iaria
发表日期2020-01-05
出版年2020
语种英语
摘要According to the Hicksian criterion, two products are complements if their (compensated) cross-price elasticity is negative. While attractive in theory, the implementation of the Hicksian criterion can be hard: computing elasticities requires the estimation of structural models allowing for both complementarity and substitutability. Here, we instead investigate the correlation criterion, whose implementation only requires the comparison of observed market shares. We show that, in a large class of non-parametric models, the correlation criterion satisfies all the axioms by Manzini et al. (2018) and how, in mixed logit models, it can be used to learn about the Hicksian criterion.
主题Industrial Organization
关键词Hicksian complementarity Substitutability Correlation Demand elasticity Demand estimation Market shares
URLhttps://cepr.org/publications/dp14273
来源智库Centre for Economic Policy Research (United Kingdom)
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/543164
推荐引用方式
GB/T 7714
Alessandro Iaria. DP14273 Inferring Complementarity from Correlations rather than Structural Estimation. 2020.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Alessandro Iaria]的文章
百度学术
百度学术中相似的文章
[Alessandro Iaria]的文章
必应学术
必应学术中相似的文章
[Alessandro Iaria]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。