G2TT
来源类型Discussion paper
规范类型论文
来源IDDP14469
DP14469 A Similarity-based Approach for Macroeconomic Forecasting
Massimiliano Marcellino; George Kapetanios; Yiannis Dendramis
发表日期2020-03-04
出版年2020
语种英语
摘要In the aftermath of the recent financial crisis there has been considerable focus on methods for predicting macroeconomic variables when their behavior is subject to abrupt changes, associated for example with crisis periods. In this paper we propose similarity based approaches as a way to handle parameter instability, and apply them to macroeconomic forecasting. The rationale is that clusters of past data that match the current economic conditions can be more informative for forecasting than the entire past behavior of the variable of interest. We apply our methods to predict both simulated data in a set of Monte Carlo experiments, and a broad set of key US macroeconomic indicators. The forecast evaluation exercises indicate that similarity-based approaches perform well, in general, in comparison with other common time-varying forecasting methods, and particularly well during crisis episodes.
主题Monetary Economics and Fluctuations
关键词Macroeconomic forecasting Forecast comparison Empirical similarity Parameter time variation Kernel estimation
URLhttps://cepr.org/publications/dp14469
来源智库Centre for Economic Policy Research (United Kingdom)
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/543368
推荐引用方式
GB/T 7714
Massimiliano Marcellino,George Kapetanios,Yiannis Dendramis. DP14469 A Similarity-based Approach for Macroeconomic Forecasting. 2020.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Massimiliano Marcellino]的文章
[George Kapetanios]的文章
[Yiannis Dendramis]的文章
百度学术
百度学术中相似的文章
[Massimiliano Marcellino]的文章
[George Kapetanios]的文章
[Yiannis Dendramis]的文章
必应学术
必应学术中相似的文章
[Massimiliano Marcellino]的文章
[George Kapetanios]的文章
[Yiannis Dendramis]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。