G2TT
来源类型Discussion paper
规范类型论文
来源IDDP14603
DP14603 Advances in Structural Vector Autoregressions with Imperfect Identifying Information
Christiane Baumeister; James Hamilton
发表日期2020-04-12
出版年2020
语种英语
摘要This paper examines methods for structural interpretation of vector autoregressions when the identifying information is regarded as imperfect or incomplete. We suggest that a Bayesian approach offers a unifying theme for guiding inference in such settings. Among other advantages, the unified approach solves a problem with calculating elasticities that appears not to have been recognized by earlier researchers. We also call attention to some computational concerns of which researchers who approach this problem using other methods should be aware.
主题International Macroeconomics and Finance ; Monetary Economics and Fluctuations
关键词Structural vector autoregressions Bayesian analysis Identification Elasticities Sign restrictions Proxy vars
URLhttps://cepr.org/publications/dp14603
来源智库Centre for Economic Policy Research (United Kingdom)
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/543510
推荐引用方式
GB/T 7714
Christiane Baumeister,James Hamilton. DP14603 Advances in Structural Vector Autoregressions with Imperfect Identifying Information. 2020.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Christiane Baumeister]的文章
[James Hamilton]的文章
百度学术
百度学术中相似的文章
[Christiane Baumeister]的文章
[James Hamilton]的文章
必应学术
必应学术中相似的文章
[Christiane Baumeister]的文章
[James Hamilton]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。