G2TT
来源类型Discussion paper
规范类型论文
来源IDDP14626
DP14626 Robust Bayesian Inference in Proxy SVARs
Raffaella Giacomini; Toru Kitagawa; Matthew Read
发表日期2020-04-16
出版年2020
语种英语
摘要We develop methods for robust Bayesian inference in structural vector autoregressions (SVARs) where the parameters of interest are set-identified using external instruments, or ‘proxy SVARs’. Set-identification in these models typically occurs when there are multiple instruments for multiple structural shocks. Existing Bayesian approaches to inference in proxy SVARs require researchers to specify a single prior over the model’s parameters, but, under set-identification, a component of the prior is never revised. We extend the robust Bayesian approach to inference in set-identified models proposed by Giacomini and Kitagawa (2018) – which allows researchers to relax potentially con- troversial point-identifying restrictions without having to specify an unrevisable prior – to proxy SVARs. We provide new results on the frequentist validity of the approach in proxy SVARs. We also explore the effect of instrument strength on inference about the identified set. We illustrate our approach by revisiting Mertens and Ravn (2013) and relaxing the assumption that they impose to obtain point identification.
主题Monetary Economics and Fluctuations
URLhttps://cepr.org/publications/dp14626
来源智库Centre for Economic Policy Research (United Kingdom)
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/543536
推荐引用方式
GB/T 7714
Raffaella Giacomini,Toru Kitagawa,Matthew Read. DP14626 Robust Bayesian Inference in Proxy SVARs. 2020.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Raffaella Giacomini]的文章
[Toru Kitagawa]的文章
[Matthew Read]的文章
百度学术
百度学术中相似的文章
[Raffaella Giacomini]的文章
[Toru Kitagawa]的文章
[Matthew Read]的文章
必应学术
必应学术中相似的文章
[Raffaella Giacomini]的文章
[Toru Kitagawa]的文章
[Matthew Read]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。