G2TT
来源类型Discussion paper
规范类型论文
来源IDDP14914
DP14914 Gaussian rank correlation and regression
Dante Amengual; ENRIQUE SENTANA; Zhanyuan Tian
发表日期2020-06-21
出版年2020
语种英语
摘要We study the statistical properties of Pearson correlation coefficients of Gaussian ranks, and Gaussian rank regressions -- OLS applied to those ranks. We show that these procedures are fully efficient when the true copula is Gaussian and the margins are non-parametrically estimated, and remain consistent for their population analogues otherwise. We compare them to Spearman and Pearson correlations and their regression counterparts theoretically and in extensive Monte Carlo simulations. Empirical applications to migration and growth across US states, the augmented Solow growth model, and momentum and reversal effects in individual stock returns confirm that Gaussian rank procedures are insensitive to outliers.
主题Financial Economics
关键词Copula Growth regressions Migration Misspecification Momentum Robustness Short-term reversals
URLhttps://cepr.org/publications/dp14914
来源智库Centre for Economic Policy Research (United Kingdom)
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/543855
推荐引用方式
GB/T 7714
Dante Amengual,ENRIQUE SENTANA,Zhanyuan Tian. DP14914 Gaussian rank correlation and regression. 2020.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Dante Amengual]的文章
[ENRIQUE SENTANA]的文章
[Zhanyuan Tian]的文章
百度学术
百度学术中相似的文章
[Dante Amengual]的文章
[ENRIQUE SENTANA]的文章
[Zhanyuan Tian]的文章
必应学术
必应学术中相似的文章
[Dante Amengual]的文章
[ENRIQUE SENTANA]的文章
[Zhanyuan Tian]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。