G2TT
来源类型Discussion paper
规范类型论文
来源IDDP15160
DP15160 Empirical Productivity Distributions and International Trade
Peter Egger; Sergey Nigai
发表日期2020-08-12
出版年2020
语种英语
摘要We use firm-level data for 15 countries and 13 manufacturing sectors to estimate firm-level productivity parameters and to establish representative country-sector-specific empirical productivity distributions. We use these distributions against the backdrop of multi-sector versions of the models of Eaton and Kortum (2002) and Melitz (2003) to quantify the role of technology in shaping international trade flows. We find that, on average, absolute advantage measured as productivity differences across countries within sectors explains 15% and 21% of the total variation in bilateral trade shares in the models of Eaton and Kortum (2002) and Melitz (2003), respectively. In contrast, on average, comparative advantage measured as productivity differences across sectors within countries explains 39% and 47% of the variation in trade flows in these two models. We also demonstrate that empirical productivity distributions entail quantitatively important micro-to-macro implications for marginal responses of trade flows to changes in trade costs, for gravity-type estimation of trade models, and for comparative statics isomorphism between the customarily parameterized models of international trade. We confirm the predictions of the two aforementioned models under empirical productivity distributions in the data.
主题International Trade and Regional Economics
关键词Empirical trade analysis Productivity distributions Technology Quantitative trade analysis
URLhttps://cepr.org/publications/dp15160
来源智库Centre for Economic Policy Research (United Kingdom)
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/544128
推荐引用方式
GB/T 7714
Peter Egger,Sergey Nigai. DP15160 Empirical Productivity Distributions and International Trade. 2020.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Peter Egger]的文章
[Sergey Nigai]的文章
百度学术
百度学术中相似的文章
[Peter Egger]的文章
[Sergey Nigai]的文章
必应学术
必应学术中相似的文章
[Peter Egger]的文章
[Sergey Nigai]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。