G2TT
来源类型Discussion paper
规范类型论文
来源IDDP15245
DP15245 How to Estimate a VAR after March 2020
Michele Lenza; Giorgio Primiceri
发表日期2020-09-01
出版年2020
语种英语
摘要This paper illustrates how to handle a sequence of extreme observations---such as those recorded during the COVID-19 pandemic---when estimating a Vector Autoregression, which is the most popular time-series model in macroeconomics. Our results show that the ad-hoc strategy of dropping these observations may be acceptable for the purpose of parameter estimation. However, disregarding these recent data is inappropriate for forecasting the future evolution of the economy, because it vastly underestimates uncertainty.
主题Monetary Economics and Fluctuations
关键词Covid-19 Volatility Outliers Density forecasts
URLhttps://cepr.org/publications/dp15245
来源智库Centre for Economic Policy Research (United Kingdom)
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/544220
推荐引用方式
GB/T 7714
Michele Lenza,Giorgio Primiceri. DP15245 How to Estimate a VAR after March 2020. 2020.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Michele Lenza]的文章
[Giorgio Primiceri]的文章
百度学术
百度学术中相似的文章
[Michele Lenza]的文章
[Giorgio Primiceri]的文章
必应学术
必应学术中相似的文章
[Michele Lenza]的文章
[Giorgio Primiceri]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。