G2TT
来源类型Discussion paper
规范类型论文
来源IDDP15246
DP15246 Understanding Persistence
Morgan Kelly
发表日期2020-09-03
出版年2020
语种英语
摘要A large literature on persistence finds that many modern outcomes strongly reflect characteristics of the same places in the distant past. These studies typically combine unusually high t statistics with severe spatial autocorrelation in residuals, suggesting that some findings may be artefacts of underestimating standard errors or of fitting spatial trends. For 25 studies in leading journals, I apply three basic robustness checks against spatial trends and find that effect sizes typically fall by over half, leaving most well known results insignificant at conventional levels. Turning to standard errors, there is currently no data-driven method for selecting an appropriate HAC spatial kernel. The paper proposes a simple procedure where a kernel with a highly flexible functional form is estimated by maximum likelihood. After correction, standard errors tend to rise substantially for cross sectional studies but to fall for panels. Overall, credible identification strategies tend to perform no better than naive regressions. Although the focus here is on historical persistence, the methods apply to regressions using spatial data more generally.
主题Economic History
URLhttps://cepr.org/publications/dp15246
来源智库Centre for Economic Policy Research (United Kingdom)
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/544221
推荐引用方式
GB/T 7714
Morgan Kelly. DP15246 Understanding Persistence. 2020.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Morgan Kelly]的文章
百度学术
百度学术中相似的文章
[Morgan Kelly]的文章
必应学术
必应学术中相似的文章
[Morgan Kelly]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。