G2TT
来源类型Discussion paper
规范类型论文
来源IDDP15346
DP15346 Deep Learning Classification: Modeling Discrete Labor Choice
Serguei Maliar
发表日期2020-10-07
出版年2020
语种英语
摘要We introduce a deep learning classification (DLC) method for analyzing equilibrium in discrete-continuous choice dynamic models. As an illustration, we apply the DLC method to solve a version of Krusell and Smith's (1998) heterogeneous-agent model with incomplete markets, borrowing constraint and indivisible labor choice. The novel feature of our analysis is that we construct discontinuous decision functions that tell us when the agent switches from one employment state to another, conditional on the economy's state. We use deep learning not only to characterize the discrete indivisible choice but also to perform model reduction and to deal with multicollinearity. Our TensorFlow-based implementation of DLC is tractable in models with thousands of state variables.
主题Monetary Economics and Fluctuations
关键词Deep learning Neural network Logistic regression Classification Discrete choice Indivisible labor Intensive and extensive margins
URLhttps://cepr.org/publications/dp15346
来源智库Centre for Economic Policy Research (United Kingdom)
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/544328
推荐引用方式
GB/T 7714
Serguei Maliar. DP15346 Deep Learning Classification: Modeling Discrete Labor Choice. 2020.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Serguei Maliar]的文章
百度学术
百度学术中相似的文章
[Serguei Maliar]的文章
必应学术
必应学术中相似的文章
[Serguei Maliar]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。