G2TT
来源类型Discussion paper
规范类型论文
来源IDDP15388
DP15388 Piecewise-Linear Approximations and Filtering for DSGE Models with Occasionally Binding Constraints
Borağan Aruoba; Pablo Cuba-Borda; Kenji Hilga-Flores; Frank Schorfheide; Sergio Villalvazo
发表日期2020-10-19
出版年2020
语种英语
摘要We develop an algorithm to construct approximate decision rules that are piecewise-linear and continuous for DSGE models with an occasionally binding constraint. The functional form of the decision rules allows us to derive a conditionally optimal particle filter (COPF) for the evaluation of the likelihood function that exploits the structure of the solution. We document the accuracy of the likelihood approximation and embed it into a particle Markov chain Monte Carlo algorithm to conduct Bayesian estimation. Compared with a standard bootstrap particle filter, the COPF significantly reduces the persistence of the Markov chain, improves the accuracy of Monte Carlo approximations of posterior moments, and drastically speeds up computations. We use the techniques to estimate a small-scale DSGE model to assess the effects of the government spending portion of the American Recovery and Reinvestment Act in 2009 when interest rates reached the zero lower bound.
主题Monetary Economics and Fluctuations
关键词Bayesian estimation Effective lower bound on nominal interest rates Nonlinear filtering Nonlinear solution methods Particle mcmc
URLhttps://cepr.org/publications/dp15388
来源智库Centre for Economic Policy Research (United Kingdom)
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/544373
推荐引用方式
GB/T 7714
Borağan Aruoba,Pablo Cuba-Borda,Kenji Hilga-Flores,et al. DP15388 Piecewise-Linear Approximations and Filtering for DSGE Models with Occasionally Binding Constraints. 2020.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Borağan Aruoba]的文章
[Pablo Cuba-Borda]的文章
[Kenji Hilga-Flores]的文章
百度学术
百度学术中相似的文章
[Borağan Aruoba]的文章
[Pablo Cuba-Borda]的文章
[Kenji Hilga-Flores]的文章
必应学术
必应学术中相似的文章
[Borağan Aruoba]的文章
[Pablo Cuba-Borda]的文章
[Kenji Hilga-Flores]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。