G2TT
来源类型Discussion paper
规范类型论文
来源IDDP15411
DP15411 Discrete Mixtures of Normals Pseudo Maximum Likelihood Estimators of Structural Vector Autoregressions
Gabriele Fiorentini; ENRIQUE SENTANA
发表日期2020-10-29
出版年2020
语种英语
摘要Likelihood inference in structural vector autoregressions with independent non-Gaussian shocks leads to parametric identification and efficient estimation at the risk of inconsistencies under distributional misspecification. We prove that autoregressive coefficients and (scaled) impact multipliers remain consistent, but the drifts and standard deviations of the shocks are generally inconsistent. Nevertheless, we show consistency when the non-Gaussian log-likelihood is a discrete scale mixture of normals in the symmetric case, or an unrestricted finite mixture more generally. Our simulation exercises compare the efficiency of these estimators to other consistent proposals. Finally, our empirical application looks at dynamic linkages between three popular volatility indices.
主题Financial Economics
关键词Consistency Finite normal mixtures Pseudo maximum likelihood estimators Structural models Volatility indices
URLhttps://cepr.org/publications/dp15411
来源智库Centre for Economic Policy Research (United Kingdom)
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/544399
推荐引用方式
GB/T 7714
Gabriele Fiorentini,ENRIQUE SENTANA. DP15411 Discrete Mixtures of Normals Pseudo Maximum Likelihood Estimators of Structural Vector Autoregressions. 2020.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Gabriele Fiorentini]的文章
[ENRIQUE SENTANA]的文章
百度学术
百度学术中相似的文章
[Gabriele Fiorentini]的文章
[ENRIQUE SENTANA]的文章
必应学术
必应学术中相似的文章
[Gabriele Fiorentini]的文章
[ENRIQUE SENTANA]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。