G2TT
来源类型Discussion paper
规范类型论文
来源IDDP15504
DP15504 Platform Design When Sellers Use Pricing Algorithms
Justin Johnson; Andrew Rhodes; Matthijs Wildenbeest
发表日期2020-11-30
出版年2020
语种英语
摘要Using both economic theory and Artificial Intelligence (AI) pricing algorithms, we investigate the ability of a platform to design its marketplace to promote competition, improve consumer surplus, and even raise its own profits. We allow sellers to use Q-learning algorithms (a common reinforcement-learning technique from the computer-science literature) to devise pricing strategies in a setting with repeated interactions, and consider the effect of platform rules that reward firms that cut prices with additional exposure to consumers. Overall, the evidence from our experiments suggests that platform design decisions can meaningfully benefit consumers even when algorithmic collusion might otherwise emerge but that achieving these gains may require more than the simplest steering policies when algorithms value the future highly. We also find that policies that raise consumer surplus can raise the profits of the platform, depending on the platform's revenue model. Finally, we document several learning challenges faced by the algorithms.
主题Industrial Organization
关键词Algorithms Artificial intelligence Collusion Platform design
URLhttps://cepr.org/publications/dp15504
来源智库Centre for Economic Policy Research (United Kingdom)
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/544505
推荐引用方式
GB/T 7714
Justin Johnson,Andrew Rhodes,Matthijs Wildenbeest. DP15504 Platform Design When Sellers Use Pricing Algorithms. 2020.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Justin Johnson]的文章
[Andrew Rhodes]的文章
[Matthijs Wildenbeest]的文章
百度学术
百度学术中相似的文章
[Justin Johnson]的文章
[Andrew Rhodes]的文章
[Matthijs Wildenbeest]的文章
必应学术
必应学术中相似的文章
[Justin Johnson]的文章
[Andrew Rhodes]的文章
[Matthijs Wildenbeest]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。