G2TT
来源类型Discussion paper
规范类型论文
来源IDDP15738
DP15738 Algorithmic collusion with imperfect monitoring
Giacomo Calzolari; Emilio Calvano; Vincenzo Denicolò; Sergio Pastorello
发表日期2021-01-29
出版年2021
语种英语
摘要We show that if they are allowed enough time to complete the learning, Q-learning algorithms can learn to collude in an environment with imperfect monitoring adapted from Green and Porter (1984), without having been instructed to do so, and without communicating with one another. Collusion is sustained by punishments that take the form of "price wars" triggered by the observation of low prices. The punishments have a finite duration, being harsher initially and then gradually fading away. Such punishments are triggered both by deviations and by adverse demand shocks.
主题Industrial Organization
关键词Artificial intelligence Q-learning Imperfect monitoring Collusion
URLhttps://cepr.org/publications/dp15738
来源智库Centre for Economic Policy Research (United Kingdom)
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/544741
推荐引用方式
GB/T 7714
Giacomo Calzolari,Emilio Calvano,Vincenzo Denicolò,et al. DP15738 Algorithmic collusion with imperfect monitoring. 2021.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Giacomo Calzolari]的文章
[Emilio Calvano]的文章
[Vincenzo Denicolò]的文章
百度学术
百度学术中相似的文章
[Giacomo Calzolari]的文章
[Emilio Calvano]的文章
[Vincenzo Denicolò]的文章
必应学术
必应学术中相似的文章
[Giacomo Calzolari]的文章
[Emilio Calvano]的文章
[Vincenzo Denicolò]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。