G2TT
来源类型Discussion paper
规范类型论文
来源IDDP15840
DP15840 The Gender Pay Gap Revisited with Big Data: Do Methodological Choices Matter?
Anthony Strittmatter; Conny Wunsch
发表日期2021-02-23
出版年2021
语种英语
摘要The vast majority of existing studies that estimate the average unexplained gender pay gap use unnecessarily restrictive linear versions of the Blinder-Oaxaca decomposition. Using a notably rich and large data set of 1.7 million employees in Switzerland, we investigate how the methodological improvements made possible by such big data affect estimates of the unexplained gender pay gap. We study the sensitivity of the estimates with regard to i) the availability of observationally comparable men and women, ii) model flexibility when controlling for wage determinants, and iii) the choice of different parametric and semi-parametric estimators, including variants that make use of machine learning methods. We find that these three factors matter greatly. Blinder-Oaxaca estimates of the unexplained gender pay gap decline by up to 39% when we enforce comparability between men and women and use a more flexible specification of the wage equation. Semi-parametric matching yields estimates that when compared with the Blinder-Oaxaca estimates, are up to 50% smaller and also less sensitive to the way wage determinants are included.
主题Labour Economics
关键词Gender inequality Gender pay gap Common support Model specification Matching estimator Machine learning
URLhttps://cepr.org/publications/dp15840
来源智库Centre for Economic Policy Research (United Kingdom)
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/544836
推荐引用方式
GB/T 7714
Anthony Strittmatter,Conny Wunsch. DP15840 The Gender Pay Gap Revisited with Big Data: Do Methodological Choices Matter?. 2021.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Anthony Strittmatter]的文章
[Conny Wunsch]的文章
百度学术
百度学术中相似的文章
[Anthony Strittmatter]的文章
[Conny Wunsch]的文章
必应学术
必应学术中相似的文章
[Anthony Strittmatter]的文章
[Conny Wunsch]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。