G2TT
来源类型Discussion paper
规范类型论文
来源IDDP15854
DP15854 Nowcasting with Large Bayesian Vector Autoregressions
Jacopo Cimadomo; Domenico Giannone; Michele Lenza; Francesca Monti; Andrej Sokol
发表日期2021-02-26
出版年2021
语种英语
摘要Monitoring economic conditions in real time, or nowcasting, and Big Data analytics share some challenges, sometimes called the three "Vs". Indeed, nowcasting is characterized by the use of a large number of time series (Volume), the complexity of the data covering various sectors of the economy, with different frequencies and precision and asynchronous release dates (Variety), and the need to incorporate new information continuously and in a timely manner (Velocity). In this paper, we explore three alternative routes to nowcasting with Bayesian Vector Autoregressive (BVAR) models and find that they can effectively handle the three Vs by producing, in real time, accurate probabilistic predictions of US economic activity and a meaningful narrative by means of scenario analysis.
主题Monetary Economics and Fluctuations
关键词Big data Scenario analysis Mixed frequency Real time Business cycles Nowcasting
URLhttps://cepr.org/publications/dp15854
来源智库Centre for Economic Policy Research (United Kingdom)
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/544847
推荐引用方式
GB/T 7714
Jacopo Cimadomo,Domenico Giannone,Michele Lenza,et al. DP15854 Nowcasting with Large Bayesian Vector Autoregressions. 2021.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Jacopo Cimadomo]的文章
[Domenico Giannone]的文章
[Michele Lenza]的文章
百度学术
百度学术中相似的文章
[Jacopo Cimadomo]的文章
[Domenico Giannone]的文章
[Michele Lenza]的文章
必应学术
必应学术中相似的文章
[Jacopo Cimadomo]的文章
[Domenico Giannone]的文章
[Michele Lenza]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。