G2TT
来源类型Discussion paper
规范类型论文
来源IDDP15867
DP15867 Can Machine Learning Catch the COVID-19 Recession?
Massimiliano Marcellino; Dalibor Stevanovic; Philippe Goulet Coulombe
发表日期2021-03-02
出版年2021
语种英语
摘要Based on evidence gathered from a newly built large macroeconomic data set for the UK, labeled UK-MD and comparable to similar datasets for the US and Canada, it seems the most promising avenue for forecasting during the pandemic is to allow for general forms of nonlinearity by using machine learning (ML) methods. But not all nonlinear ML methods are alike. For instance, some do not allow to extrapolate (like regular trees and forests) and some do (when complemented with linear dynamic components). This and other crucial aspects of ML-based forecasting in unprecedented times are studied in an extensive pseudo-out-of-sample exercise.
主题Monetary Economics and Fluctuations
URLhttps://cepr.org/publications/dp15867
来源智库Centre for Economic Policy Research (United Kingdom)
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/544859
推荐引用方式
GB/T 7714
Massimiliano Marcellino,Dalibor Stevanovic,Philippe Goulet Coulombe. DP15867 Can Machine Learning Catch the COVID-19 Recession?. 2021.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Massimiliano Marcellino]的文章
[Dalibor Stevanovic]的文章
[Philippe Goulet Coulombe]的文章
百度学术
百度学术中相似的文章
[Massimiliano Marcellino]的文章
[Dalibor Stevanovic]的文章
[Philippe Goulet Coulombe]的文章
必应学术
必应学术中相似的文章
[Massimiliano Marcellino]的文章
[Dalibor Stevanovic]的文章
[Philippe Goulet Coulombe]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。