G2TT
来源类型Discussion paper
规范类型论文
来源IDDP16552
DP16552 Trade, Gravity and Aggregation
Holger Breinlich; Dennis Novy; JMC Santos Silva
发表日期2021-09-14
出版年2021
语种英语
摘要Gravity regressions are a common tool in the empirical international trade literature and serve an important function for many policy purposes. We study to what extent micro-level parameters can be recovered from gravity regressions estimated with aggregate data. We show that estimation of gravity equations in their original multiplicative form via Poisson pseudo maximum likelihood (PPML) is more robust to aggregation than estimation of log-linearized gravity equations via ordinary least squares (OLS). In the leading case where regressors do not vary at the micro level, PPML estimates obtained with aggregate data have a clear interpretation as trade-weighted averages of micro-level parameters that is not shared by OLS estimates. However, when regressors vary at the micro level, using disaggregated data is essential because in this case not even PPML can recover parameters of interest. We illustrate our results with an application to Baier and Bergstrand's (2007) influential study of the effects of trade agreements on trade flows. We examine how their findings change when estimation is performed at different levels of aggregation, and explore the consequences of aggregation for predicting the effects of trade agreements.
主题International Trade and Regional Economics
关键词Free trade agreements Gravity equation Ols Ppml Trade costs
URLhttps://cepr.org/publications/dp16552
来源智库Centre for Economic Policy Research (United Kingdom)
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/545503
推荐引用方式
GB/T 7714
Holger Breinlich,Dennis Novy,JMC Santos Silva. DP16552 Trade, Gravity and Aggregation. 2021.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Holger Breinlich]的文章
[Dennis Novy]的文章
[JMC Santos Silva]的文章
百度学术
百度学术中相似的文章
[Holger Breinlich]的文章
[Dennis Novy]的文章
[JMC Santos Silva]的文章
必应学术
必应学术中相似的文章
[Holger Breinlich]的文章
[Dennis Novy]的文章
[JMC Santos Silva]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。