G2TT
来源类型Discussion paper
规范类型论文
来源IDDP16748
DP16748 Ambiguity with Machine Learning: An Application to Portfolio Choice
Eric Ghysels; Yan Qian; Steve Raymond
发表日期2021-11-22
出版年2021
语种英语
摘要To characterize ambiguity we use machine learning to impose guidance and discipline on the formulation of expectations in a data-rich environment. In addition, we use the bootstrap to generate plausible synthetic samples of data not seen in historical real data to create statistics of interest pertaining to uncertainty. While our approach is generic we focus on robust portfolio allocation problems as an application and study the impact of risk versus uncertainty in a dynamic mean-variance setting. We show that a mean-variance optimizing investor achieves economically meaningful wealth gains (33%) across our sample from 1996-2019 by internalizing our uncertainty measure during portfolio formation.
主题Financial Economics
URLhttps://cepr.org/publications/dp16748
来源智库Centre for Economic Policy Research (United Kingdom)
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/545682
推荐引用方式
GB/T 7714
Eric Ghysels,Yan Qian,Steve Raymond. DP16748 Ambiguity with Machine Learning: An Application to Portfolio Choice. 2021.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Eric Ghysels]的文章
[Yan Qian]的文章
[Steve Raymond]的文章
百度学术
百度学术中相似的文章
[Eric Ghysels]的文章
[Yan Qian]的文章
[Steve Raymond]的文章
必应学术
必应学术中相似的文章
[Eric Ghysels]的文章
[Yan Qian]的文章
[Steve Raymond]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。