G2TT
来源类型Discussion paper
规范类型论文
来源IDDP16833
DP16833 Welfare Comparisons for Biased Learning
Mira Frick; Yuhta Ishii
发表日期2021-12-24
出版年2021
语种英语
摘要We study robust welfare comparisons of learning biases, i.e., deviations from correct Bayesian updating. Given a true signal distribution, we deem one bias more harmful than another if it yields lower objective expected payoffs in all decision problems. We characterize this ranking in static (one signal) and dynamic (many signals) settings. While the static characterization compares posteriors signal-by-signal, the dynamic characterization employs an “efficiency index” quantifying the speed of belief convergence. Our results yield welfare-founded quantifications of the severity of well-documented biases. Moreover, the static and dynamic rankings can disagree, and “smaller” biases can be worse in dynamic settings.
主题Organizational Economics
URLhttps://cepr.org/publications/dp16833
来源智库Centre for Economic Policy Research (United Kingdom)
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/545758
推荐引用方式
GB/T 7714
Mira Frick,Yuhta Ishii. DP16833 Welfare Comparisons for Biased Learning. 2021.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Mira Frick]的文章
[Yuhta Ishii]的文章
百度学术
百度学术中相似的文章
[Mira Frick]的文章
[Yuhta Ishii]的文章
必应学术
必应学术中相似的文章
[Mira Frick]的文章
[Yuhta Ishii]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。