G2TT
来源类型Discussion paper
规范类型论文
来源IDDP17035
DP17035 Sequential Monte Carlo With Model Tempering
Marko Mlikota; Frank Schorfheide
发表日期2022-02-15
出版年2022
语种英语
摘要Modern macroeconometrics often relies on time series models for which it is time-consuming to evaluate the likelihood function. We demonstrate how Bayesian computations for such models can be drastically accelerated by reweighting and mutating posterior draws from an approximating model that allows for fast likelihood evaluations, into posterior draws from the model of interest, using a sequential Monte Carlo (SMC) algorithm. We apply the technique to the estimation of a vector autoregression with stochastic volatility and a nonlinear dynamic stochastic general equilibrium model. The runtime reductions we obtain range from 27% to 88%.
主题Monetary Economics and Fluctuations
关键词Bayesian computations Dynamic stochastic general equilibrium models Sequential monte carlo stochastic volatility Vector autoregressions
URLhttps://cepr.org/publications/dp17035
来源智库Centre for Economic Policy Research (United Kingdom)
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/545989
推荐引用方式
GB/T 7714
Marko Mlikota,Frank Schorfheide. DP17035 Sequential Monte Carlo With Model Tempering. 2022.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Marko Mlikota]的文章
[Frank Schorfheide]的文章
百度学术
百度学术中相似的文章
[Marko Mlikota]的文章
[Frank Schorfheide]的文章
必应学术
必应学术中相似的文章
[Marko Mlikota]的文章
[Frank Schorfheide]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。