G2TT
来源类型Discussion paper
规范类型论文
来源IDDP17133
DP17133 Identifying Monetary Policy Shocks: A Natural Language Approach
Thomas Drechsel; Borağan Aruoba
发表日期2022-03-24
出版年2022
语种英语
摘要We propose a novel method for the identification of monetary policy shocks. By applying natural language processing techniques to documents that economists at the Federal Reserve prepare for Federal Open Market Committee meetings, we capture the information set available to the committee at the time of policy decisions. Using machine learning techniques, we then predict changes in the target interest rate conditional on this information set, and obtain a measure of monetary policy shocks as the residual. An appealing feature of our procedure is that only a small fraction of interest rate changes is attributed to exogenous shocks. We find that the dynamic responses of macroeconomic variables to our identified shocks are consistent with the theoretical consensus.
主题International Macroeconomics and Finance ; Monetary Economics and Fluctuations
关键词monetary policy Federal Reserve Natural language processing Machine learning
URLhttps://cepr.org/publications/dp17133-3
来源智库Centre for Economic Policy Research (United Kingdom)
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/546117
推荐引用方式
GB/T 7714
Thomas Drechsel,Borağan Aruoba. DP17133 Identifying Monetary Policy Shocks: A Natural Language Approach. 2022.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Thomas Drechsel]的文章
[Borağan Aruoba]的文章
百度学术
百度学术中相似的文章
[Thomas Drechsel]的文章
[Borağan Aruoba]的文章
必应学术
必应学术中相似的文章
[Thomas Drechsel]的文章
[Borağan Aruoba]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。