G2TT
来源类型Discussion paper
规范类型论文
来源IDDP17194
DP17194 The Virtue of Complexity in Return Prediction
Semyon Malamud; Bryan Kelly; Kangying Zhou
发表日期2022-04-07
出版年2022
语种英语
摘要We theoretically characterize the behavior of return prediction models in the high complexity regime, i.e. when the number of parameters exceeds the number of observations. Contrary to conventional wisdom in finance, return prediction R2 and optimal portfolio Sharpe ratio generally increase with model parameterization, even when minimal regularization is used. Empirically, we document this "virtue of complexity" in US equity market prediction. High complexity models deliver economically large and statistically significant out-of-sample portfolio gains relative to simpler models, due in large part to their remarkable ability to predict recessions.
主题Financial Economics
关键词Portfolio choice Machine learning Random matrix theory Benign overfit Overparameterization
URLhttps://cepr.org/publications/dp17194
来源智库Centre for Economic Policy Research (United Kingdom)
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/546190
推荐引用方式
GB/T 7714
Semyon Malamud,Bryan Kelly,Kangying Zhou. DP17194 The Virtue of Complexity in Return Prediction. 2022.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Semyon Malamud]的文章
[Bryan Kelly]的文章
[Kangying Zhou]的文章
百度学术
百度学术中相似的文章
[Semyon Malamud]的文章
[Bryan Kelly]的文章
[Kangying Zhou]的文章
必应学术
必应学术中相似的文章
[Semyon Malamud]的文章
[Bryan Kelly]的文章
[Kangying Zhou]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。