G2TT
来源类型Discussion paper
规范类型论文
来源IDDP16933
DP16933 Flexible Demand Estimation with Search Data
Tomomichi Amano; Andrew Rhodes; Stephan Seiler
发表日期2022-05-25
出版年2022
语种英语
摘要Traditional methods for estimating demand are not always well-suited to online markets, where individual products are sold infrequently, unobserved factors such as webpage layout drive substitution, and often only a limited set of product characteristics is observed. We propose a demand model where browsing data—which is abundant in many online settings— is used to infer individual consumers' consideration sets. In our model, the underlying variables which drive consideration can be correlated arbitrarily across products. We estimate the model through a constraint maximization approach, based on the insight that these correlations should rationalize the product-pair co-search frequencies that are observed in the data. In turn, these correlations make it possible to estimate more flexible substitution patterns. We apply the model to data from an online retailer, recover the elasticity matrix, and solve for optimal prices.
主题Industrial Organization
关键词Demand estimation Consideration sets Consumer search
URLhttps://cepr.org/publications/dp16933-0
来源智库Centre for Economic Policy Research (United Kingdom)
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/546362
推荐引用方式
GB/T 7714
Tomomichi Amano,Andrew Rhodes,Stephan Seiler. DP16933 Flexible Demand Estimation with Search Data. 2022.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Tomomichi Amano]的文章
[Andrew Rhodes]的文章
[Stephan Seiler]的文章
百度学术
百度学术中相似的文章
[Tomomichi Amano]的文章
[Andrew Rhodes]的文章
[Stephan Seiler]的文章
必应学术
必应学术中相似的文章
[Tomomichi Amano]的文章
[Andrew Rhodes]的文章
[Stephan Seiler]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。